Sistem Berkas

Daftar Isi
Pengertian
Berkas
Metode Akses
Struktur Direktori
Proteksi Berkas
Struktur Sistem Berkas
Metode Alokasi Berkas
Managemen Ruang Kosong (Free Space)
Implementasi Direktori
Efisiensi dan Unjuk Kerja
Recovery
Macam-macam Sistem Berkas
Kesimpulan
Soal-Soal Sistem Berkas

Pengertian

Sistem berkas merupakan mekanisme penyimpanan on-line serta untuk akses, baik data mau pun program yang berada dalam Sistem Operasi. Terdapat dua bagian penting dalam sistem berkas, yaitu:

Pada bab ini, akan dibahas tentang berbagai aspek dari berkas dan struktur, cara menangani proteksi berkas, cara mengalokasikan ruang pada disk, melacak lokasi data, serta meng-interface bagian-bagian lain dari sistem operasi ke penyimpanan sekunder.

Berkas

Konsep Dasar

Seperti yang telah kita ketahui, komputer dapat menyimpan informasi ke beberapa media penyimpanan yang berbeda, seperti magnetic disks, magnetic tapes, dan optical disks. Agar komputer dapat digunakan dengan nyaman, sistem operasi menyediakan sistem penyimpanan dengan sistematika yang seragam. Sistem Operasi mengabstraksi properti fisik dari media penyimpanannya dan mendefinisikan unit penyimpanan logis, yaitu berkas. Berkas dipetakan ke media fisik oleh sistem operasi. Media penyimpanan ini umumnya bersifat non-volatile, sehingga kandungan di dalamnya tidak akan hilang jika terjadi gagal listrik mau pun system reboot.

Berkas adalah kumpulan informasi berkait yang diberi nama dan direkam pada penyimpanan sekunder. Dari sudut pandang pengguna, berkas merupakan bagian terkecil dari penyimpanan logis, artinya data tidak dapat ditulis ke penyimpanan sekunder kecuali jika berada di dalam berkas. Biasanya berkas merepresentasikan program (baik source mau pun bentuk objek) dan data. Data dari berkas dapat bersifat numerik, alfabetik, alfanumerik, atau pun biner. Format berkas juga bisa bebas, misalnya berkas teks, atau dapat juga diformat pasti. Secara umum, berkas adalah urutan bit, byte, baris, atau catatan yang didefinisikan oleh pembuat berkas dan pengguna.

Informasi dalam berkas ditentukan oleh pembuatnya. Ada banyak beragam jenis informasi yang dapat disimpan dalam berkas. Hal ini disebabkan oleh struktur tertentu yang dimiliki oleh berkas, sesuai dengan jenisnya masing-masing. Contohnya:

Atribut Pada Berkas

Berkas diberi nama, untuk kenyamanan bagi pengguna, dan untuk acuan bagi data yang terkandung di dalamnya. Nama berkas biasanya berupa string atau karakter. Beberapa sistem membedakan penggunaan huruf besar dan kecil dalam penamaan sebuah berkas, sementara sistem yang lain menganggap kedua hal di atas sama.Ketika berkas diberi nama, maka berkas tersebut akan menjadi mandiri terhadap proses, pengguna, bahkan sistem yang membuatnya. Atribut berkas terdiri dari:

Data tersebut dapat berguna untuk proteksi, keamanan, dan monitoring penggunaan dari berkas. Informasi tentang seluruh berkas disimpan dalam struktur direktori yang terdapat pada penyimpanan sekunder. Direktori, seperti berkas, harus bersifat non-volatile, sehingga keduanya harus disimpan pada sebuah device dan baru dibawa bagian per bagian ke memori pada saat dibutuhkan.

Operasi Pada Berkas

Sebuah berkas adalah jenis data abstrak. Untuk mendefinisikan berkas secara tepat, kita perlu melihat operasi yang dapat dilakukan pada berkas tersebut. Sistem operasi menyediakan system calls untuk membuat, membaca, menulis, mencari, menghapus, dan sebagainya. Berikut dapat kita lihat apa yang harus dilakukan sistem operasi pada keenam operasi dasar pada berkas.

Enam operasi dasar ini sudah mencakup operasi minimum yang di butuhkan. Operasi umum lainnya adalah menyambung informasi baru di akhir suatu berkas, mengubah nama suatu berkas, dan lain-lain. Operasi dasar ini kemudian digabung untuk melakukan operasi lainnya. Sebagai contoh misalnya kita menginginkan salinan dari suatu berkas, atau menyalin berkas ke peralatan I/O lainnya seperti printer, dengan cara membuat berkas lalu membaca dari berkas lama dan menulis ke berkas yang baru.

Hampir semua operasi pada berkas melibatkan pencarian berkas pada direktori. Untuk menghindari pencarian yang lama, kebanyakan sistem akan membuka berkas apabila berkas tersebut digunakan secara aktif. Sistem operasi akan menyimpan tabel kecil yang berisi informasi semua berkas yang dibuka yang disebut “tabel berkas terbuka”. Ketika berkas sudah tidak digunakan lagi dan sudah ditutup oleh yang menggunakan, maka sistem operasi mengeluarkan berkas tersebut dari tabel berkas terbuka.

Beberapa sistem terkadang langsung membuka berkas ketika berkas tersebut digunakan dan otomatis menutup berkas tersebut jika program atau pemakainya dimatikan. Tetapi pada sistem lainnya terkadang membutuhkan pembukaan berkas secara tersurat dengan system call (open) sebelum berkas dapat digunakan.

Implementasi dari buka dan tutup berkas dalam lingkungan dengan banyak perngguna seperti UNIX, lebih rumit. Dalam sistem seperti itu pengguna yang membuka berkas mungkin lebih dari satu dan pada waktu yang hampir bersamaan. Umumnya sistem operasi menggunakan tabel internal dua level. Ada tabel yang mendata proses mana saja yang membuka berkas tersebut, kemudian tabel tersebut menunjuk ke tabel yang lebih besar yang berisi informasi yang berdiri sendiri seperti lokasi berkas pada disk, tanggal akses dan ukuran berkas. Biasanya tabel tersebut juga memiliki data berapa banyak proses yang membuka berkas tersebut.

Jadi, pada dasarnya ada beberapa informasi yang terkait dengan pembukaan berkas yaitu:

Beberapa sistem operasi menyediakan fasilitas untuk memetakan berkas ke dalam memori pada sistem memori virtual. Hal tersebut mengizinkan bagian dari berkas ditempatkan pada suatu alamat di memori virtual. Operasi baca dan tulis pada memori dengan alamat tersebut dianggap sebagai operasi baca dan tulis pada berkas yang ada di alamat tersebut. Menutup berkas mengakibatkan semua data yang ada pada alamat memori tersebut dikembalikan ke disk dan dihilangkan dari memori virtual yang digunakan oleh proses.

Jenis Berkas

Pertimbangan utama dalam perancangan sistem berkas dan seluruh sistem operasi, apakah sistem operasi harus mengenali dan mendukung jenis berkas. Jika suatu sistem operasi mengenali jenis dari berkas, maka ia dapat mengoperasikan berkas tersebut. Contoh apabila pengguna mencoba mencetak berkas yang merupakan kode biner dari program yang pasti akan menghasilkan sampah, hal ini dapat dicegah apabila sistem operasi sudah diberitahu bahwa berkas tersebut merupakan kode biner.

Teknik yang umum digunakan dalam implementasi jenis berkas adalah menambahkan jenis berkas dalam nama berkas. Nama dibagi dua, nama dan akhiran (ekstensi), biasanya dipisahkan dengan karakter titik. Sistem menggunakan akhiran tersebut untuk mengindikasikan jenis berkas dan jenis operasi yang dapat dilakukan pada berkas tersebut. Sebagai contoh hanya berkas yang berakhiran .bat, .exe atau .com yang bisa dijalankan (eksekusi). Program aplikasi juga menggunakan akhiran tersebut untuk mengenal berkas yang dapat dioperasikannya. Akhiran ini dapat ditimpa atau diganti jika diperbolehkan oleh sistem operasi.

Beberapa sistem operasi menyertakan dukungan terhadap akhiran, tetapi beberapa menyerahkan kepada aplikasi untuk mengatur akhiran berkas yang digunakan, sehingga jenis dari berkas dapat menjadi petunjuk aplikasi apa yang dapat mengoperasikannya.

Sistem UNIX tidak dapat menyediakan dukungan untuk akhiran berkas karena menggunakan angka ajaib yang disimpan di depan berkas untuk mengenali jenis berkas. Tidak semua berkas memiliki angka ini, jadi sistem tidak bisa bergantung pada informasi ini. Tetapi UNIX memperbolehkan akhiran berkas tetapi hal ini tidak dipaksakan atau tergantung sistem operasi, kebanyakan hanya untuk membantu pengguna mengenali jenis isi dari suatu berkas.

Tabel 5-1. Tabel Jenis Berkas

Jenis berkas Akhiran Fungsi
executable exe, com, bat, bin program yang siap dijalankan
objek obj, o bahasa mesin, kode terkompilasi
kode asal (source code) c, cc, pas, java, asm, a kode asal dari berbagai bahasa
batch bat, sh perintah pada shell
text txt, doc data text, document
pengolah kata wpd, tex, doc format jenis pengolah data
library lib, a, DLL library untuk rutin program
print, gambar ps, dvi, gif format aSCII atau biner untuk dicetak
archive arc, zip, tar beberapa berkas yang dikumpulkan menjadi satu berkas. Terkadang dimampatkan untuk penyimpanan

Struktur Berkas

Kita juga dapat menggunakan jenis berkas untuk mengidentifikasi struktur dalam dari berkas. Berkas berupa source dan objek memiliki struktur yang cocok dengan harapan program yang membaca berkas tersebut. Suatu berkas harus memiliki struktur yang dikenali oleh sistem operasi. Sebagai contoh, sistem operasi menginginkan suatu berkas yang dapat dieksekusi memiliki struktur tertentu agar dapat diketahui dimana berkas tersebut akan ditempatkan di memori dan di mana letak instruksi pertama berkas tersebut. Beberapa sistem operasi mengembangkan ide ini sehingga mendukung beberapa struktur berkas, dengan beberapa operasi khusus untuk memanipulasi berkas dengan struktur tersebut.

Kelemahan memiliki dukungan terhadap beberapa struktur berkas adalah: Ukuran dari sistem operasi dapat menjadi besar, jika sistem operasi mendefinisikan lima struktur berkas yang berbeda maka ia perlu menampung kode untuk yang diperlukan untuk mendukung semuanya. Setiap berkas harus dapat menerapkan salah satu struktur berkas tersebut. Masalah akan timbul ketika terdapat aplikasi yang membutuhkan struktur informasi yang tidak didukung oleh sistem operasi tersebut.

Beberapa sistem operasi menerapkan dan mendukung struktur berkas sedikit struktur berkas. Pendekatan ini digunakan pada MS-DOS dan UNIX. UNIX menganggap setiap berkas sebagai urutan 8-bit byte, tidak ada interpretasi sistem operasi terhadap dari bit-bit ini. Skema tersebut menawarkan fleksibilitas tinggi tetapi dukungan yang terbatas. Setiap aplikasi harus menambahkan sendiri kode untuk menerjemahkan berkas masukan ke dalam struktur yang sesuai. Walau bagaimana pun juga sebuah sistem operasi harus memiliki minimal satu struktur berkas yaitu untuk berkas yang dapat dieksekusi sehingga sistem dapat memuat berkas dalam memori dan menjalankannya.

Sangat berguna bagi sistem operasi untuk mendukung struktur berkas yang sering digunakan karena akan menghemat pekerjaan pemrogram. Terlalu sedikit struktur berkas yang didukung akan mempersulit pembuatan program, terlalu banyak akan membuat sistem operasi terlalu besar dan pemrogram akan bingung.

Struktur Berkas Pada Disk

Menempatkan batas dalam berkas dapat menjadi rumit bagi sistem operasi. Sistem disk biasanya memiliki ukuran blok yang sudah ditetapkan dari ukuran sektor. Semua I/O dari disk dilakukan dalam satuan blok dan semua blok (‘physical record‘) memiliki ukuran yang sama. Tetapi ukuran dari ‘physical record‘ tidak akan sama dengan ukuran ‘logical record‘. Ukuran dari ‘logical record‘ akan bervariasi. Memuatkan beberapa ‘logical record‘ ke dalam ‘physical record‘ merupakan solusi umum dari masalah ini.

Sebagai contoh pada sistem operasi UNIX, semua berkas didefinisikan sebagai kumpulan byte. Setiap byte dialamatkan menurut batasnya dari awal berkas sampai akhir. Pada kasus ini ukuran ‘logical record‘ adalah 1 byte. Sistem berkas secara otomatis memuatkan byte-byte tersebut kedalam blok pada disk.

Ukuran ‘logical record‘, ukuran blok pada disk, dan teknik untuk memuatkannya menjelaskan berapa banyak ‘logical record‘ dalam tiap-tiap ‘physical record’. Teknik memuatkan dapat dilakukan oleh aplikasi pengguna atau oleh sistem operasi.

Berkas juga dapat dianggap sebagai urutan dari beberapa blok pada disk. Konversi dari ‘logical record‘ ke ‘physical record’ merupakan masalah perangkat lunak.

Tempat pada disk selalu berada pada blok, sehingga beberapa bagian dari blok terakhir yang ditempati berkas dapat terbuang. Jika setiap blok berukuran 512 byte, sebuah berkas berukuran 1.949 byte akan menempati empat blok (2.048 byte) dan akan tersisa 99 byte pada blok terakhir. Byte yang terbuang tersebut dipertahankan agar ukuran dari unit tetap blok bukan byte disebut fragmentasi dalam disk. Semua sistem berkas pasti mempunyai fragmentasi dalam disk, semakin besar ukuran blok akan semakin besar fragmentasi dalam disknya.

Penggunaan Berkas Secara Bersama-sama

Konsistensi semantik adalah parameter yang penting untuk evaluasi sistem berkas yang mendukung penggunaan berkas secara bersama. Hal ini juga merupakan karakterisasi dari sistem yang menspesifikasi semantik dari banyak pengguna yang mengakses berkas secara bersama-sama. Lebih khusus, semantik ini seharusnya dapat menspesifikasi kapan suatu modifikasi suatu data oleh satu pengguna dapat diketahui oleh pengguna lain. Terdapat beberapa macam konsistensi semantik. Di bawah ini akan dijelaskan kriteria yang digunakan dalam UNIX.

Berkas sistem UNIX mengikuti konsistensi semantik:

Metode Akses

Akses Secara Berurutan

Ketika digunakan, informasi penyimpanan berkas harus dapat diakses dan dibaca ke dalam memori komputer. Beberapa sistem hanya menyediakan satu metode akses untuk berkas. Pada sistem yang lain, contohnya IBM, terdapat banyak dukungan metode akses yang berbeda. Masalah pada sistem tersebut adalah memilih yang mana yang tepat untuk digunakan pada satu aplikasi tertentu.

Sequential Access merupakan metode yang paling sederhana. Informasi yang disimpan dalam berkas diproses berdasarkan urutan. Operasi dasar pada suatu berkas adalah tulis dan baca. Operasi baca membaca berkas dan meningkatkan pointer berkas selama di jalur lokasi I/O. Operasi tulis menambahkan ke akhir berkas dan meningkatkan ke akhir berkas yang baru. Metode ini didasarkan pada tape model sebuah berkas, dan dapat bekerja pada kedua jenis device akses (urut mau pun acak).

Akses Dengan Menggunakan Indeks

Metode ini merupakan hasil dari pengembangan metode direct access. Metode ini memasukkan indeks untuk mengakses berkas. Jadi untuk mendapatkan suatu informasi suatu berkas, kita mencari dahulu di indeks, lalu menggunakan pointer untuk mengakses berkas dan mendapatkan informasi tersebut. Namun metode ini memiliki kekurangan, yaitu apabila berkas-berkas besar, maka indeks berkas tersebut akan semakin besar. Jadi solusinya adalah dengan membuat 2 indeks, indeks primer dan indeks sekunder. Indeks primer memuat pointer ke indeks sekunder, lalu indeks sekunder menunjuk ke data yang dimaksud.

Struktur Direktori

Operasi Pada Direktori

Operasi-operasi yang dapat dilakukan pada direktori adalah:

  1. Mencari berkas, kita dapat menemukan sebuah berkas didalam sebuah struktur direktori. Karena berkas-berkas memiliki nama simbolik dan nama yang sama dapat mengindikasikan keterkaitan antara setiap berkas-berkas tersebut, mungkin kita berkeinginan untuk dapat menemukan seluruh berkas yang nama-nama berkas membentuk pola khusus.
  2. Membuat berkas, kita dapat membuat berkas baru dan menambahkan berkas tersebut kedalam direktori.
  3. Menghapus berkas, apabila berkas sudah tidak diperlukan lagi, kita dapat menghapus berkas tersebut dari direktori.
  4. Menampilkan isi direktori, kita dapat menampilkan seluruh berkas dalam direktori, dan kandungan isi direktori untuk setiap berkas dalam daftar tersebut.
  5. Mengganti nama berkas, karena nama berkas merepresentasikan isi dari berkas kepada user, maka user dapat merubah nama berkas ketika isi atau penggunaan berkas berubah. Perubahan nama dapat merubah posisi berkas dalam direktori.
  6. Melintasi sistem berkas, ini sangat berguna untuk mengakses direktori dan berkas didalam struktur direktori.

Direktori Dengan Struktur Graph

Masalah yang sangat utama pada struktur direktori “Acyclic-Graph” adalah kemampuan untuk memastikan tidak-adanya siklus. Jika pada struktur 2 tingkat direktori, seorang pengguna dapat membuat subdirektori, maka akan kita dapatkan direktori dengan struktur pohon. Sangatlah mudah untuk tetap mempertahankan sifat pohon setiap kali ada penambahan berkas atau subdirektori pada direktori dengan struktur pohon. Tapi jika kita menambahkan sambungan pada direktori dengan struktur pohon, maka akan kita dapatkan direktori dengan struktur graph sederhana.

Proses pencarian pada direktori dengan struktur “Acyclic-Graph“, apabila tidak ditangani dengan baik (algoritma tidak bagus) dapat menyebabkan proses pencarian yang berulang dan menghabiskan banyak waktu. Oleh karena itu, diperlukan skema pengumpulan sampah (“garbage-collection scheme“). Skema ini menyangkut memeriksa seluruh sistem berkas dengan menandai tiap berkas yang dapat diakses. Kemudian mengumpulkan apa pun yang tidak ditandai sebagai tempat kosong. Hal ini tentunya dapat menghabiskan banyak waktu.


Proteksi Berkas

Ketika kita menyimpan informasi dalam sebuah sistem komputer, ada dua hal yang harus menjadi perhatian utama kita. Hal tersebut adalah:

  1. Reabilitas dari sebuah sistem

    Maksud dari reabilitas sistem adalah kemampuan sebuah sistem untuk melindungi informasi yang telah disimpan agar terhindar dari kerusakan, dalam hal ini adalah perlindungan secara fisik pada sebuah berkas. Reabilitas sistem dapat dijaga dengan membuat cadangan dari setiap berkas secara manual atau pun otomatis, sesuai dengan layanan yang dari sebuah sistem operasi. Reabilitas Sistem akan dibahas lebih lanjut pada bagian berjudul Kehandalan Disk di Bab 6.

  2. Proteksi (Perlindungan) terhadap sebuah berkas

    Perlindungan terhadap berkas dapat dilakukan dengan berbagai macam cara. Pada bagian ini, kita akan membahas secara detil mekanisme yang diterapkan dalam melindungi sebuah berkas.

Tipe Akses Pada Berkas

Salah satu cara untuk melindungi berkas dalam komputer kita adalah dengan melakukan pembatasan akses pada berkas tersebut. Pembatasan akses yang dimaksudkan adalah kita, sebagai pemilik dari sebuah berkas, dapat menentukan operasi apa saja yang dapat dilakukan oleh pengguna lain terhadap berkas tersebut. Pembatasan ini berupa sebuah permission atau pun not permitted operation, tergantung pada kebutuhan pengguna lain terhadap berkas tersebut. Di bawah ini adalah beberapa operasi berkas yang dapat diatur aksesnya:

  1. Read: Membaca dari berkas
  2. Write: Menulis berkas
  3. Execute: Meload berkas kedalam memori untuk dieksekusi.
  4. Append: Menambahkan informasi kedalam berkas di akhir berkas.
  5. Delete: Menghapus berkas.
  6. List: Mendaftar properti dari sebuah berkas.
  7. Rename: Mengganti nama sebuah berkas.
  8. Copy: Menduplikasikan sebuah berkas.
  9. Edit: Mengedit sebuah berkas.

Selain operasi-operasi berkas diatas, perlindungan terhadap berkas dapat dilakukan dengan mekanisme yang lain. Namun setiap mekanisme memiliki kelebihan dan kekurangan. Pemilihan mekanisme sangatlah tergantung pada kebutuhan dan spesifikasi sistem.

Akses List dan Group

Hal yang paling umum dari sistem proteksi adalah membuat akses tergantung pada identitas pengguna yang bersangkutan. Implementasi dari akses ini adalah dengan membuat daftar akses yang berisi keterangan setiap pengguna dan keterangan akses berkas dari pengguna yang bersangkutan. Daftar akses ini akan diperiksa setiap kali seorang pengguna meminta akses ke sebuah berkas. Jika pengguna tersebut memiliki akses yang diminta pada berkas tersebut, maka diperbolehkan untuk mengakses berkas tersebut. Proses ini juga berlaku untuk hal yang sebaliknya. Akses pengguna terhadap berkas akan ditolak, dan sistem operasi akan mengeluarkan peringatan Protection Violation.

Masalah baru yang timbul adalah panjang dari daftar akses yang harus dibuat. Seperti telah disebutkan, kita harus mendaftarkan semua pengguna dalam daftar akses tersebut hanya untuk akses pada satu berkas saja. Oleh karena itu, teknik ini mengakibatkan 2 konsekuensi yang tidak dapat dihindarkan:

  1. Pembuatan daftar yang sangat panjang ini dapat menjadi pekerjaan yang sangat melelahkan sekaligus membosankan, terutama jika jumlah pengguna dalam sistem tidak dapat diketahui secara pasti.
  2. Manajemen ruang harddisk yang lebih rumit, karena ukuran sebuah direktori dapat berubah-ubah, tidak memiliki ukuran yang tetap.

Kedua konsekuensi diatas melahirkan sebuah teknik daftar akses yang lebih singkat. Teknik ini mengelompokkan pengguna berdasarkan tiga kategori:

  1. Owner: User yang membuat berkas.
  2. Group: Sekelompok pengguna yang memiliki akses yang sama terhadap sebuah berkas, atau men-share sebuah berkas.
  3. Universe: Seluruh pengguna yang terdapat dalam sistem komputer.

Dengan adanya pengelompokkan pengguna seperti ini, maka kita hanya membutuhkan tiga field untuk melindungi sebuah berkas. Field ini diasosiasikan dengan 3 buah bit untuk setiap kategori. Dalam sistem UNIX dikenal bit rwx dengan bit r untuk mengontrol akses baca, bit w sebagai kontrol menulis dan bit x sebagai bit kontrol untuk pengeksekusian. Setiap field dipisahkan dengan field separator. Dibawah ini adalah contoh dari sistem proteksi dengan daftar akses pada sistem UNIX.

Pendekatan Sistem Proteksi yang Lain

Sistem proteksi yang lazim digunakan pada sistem komputer selain diatas adalah dengan menggunakan password (kata sandi) pada setiap berkas. Beberapa sistem operasi mengimplementasikan hal ini bukan hanya pada berkas, melainkan pada direktori. Dengan sistem ini, sebuah berkas tidak akan dapat diakses selain oleh pengguna yang telah mengetahui password untuk berkas tersebut. Akan tetapi, masalah yang muncul dari sistem ini adalah jumlah password yang harus diingat oleh seorang pengguna untuk mengakses berkas dalam sebuah sistem operasi. Masalah yang lain adalah keamanan password itu sendiri. Jika hanya satu password yang digunakan, maka kebocoran password tersebut merupakan malapetaka bagi pengguna yang bersangkutan. Sekali lagi, maka kita harus menggunakan password yang berbeda untuk setiap tingkatan yang berbeda.

===========bersambung==========

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: